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A form for the two-point third-order structure function has been calculated for three-dimensional �3D�
homogeneous incompressible slowly rotating turbulent fluid. It has been argued that it may possibly hint at the
initiation of the phenomenon of two-dimensionalization of the 3D incompressible turbulence owing to rotation.
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I. INTRODUCTION

With possible realistic applications to flows in oceans and
atmospheres, rotating turbulence attracts interests of ocean-
ographers, geophysicists, mathematicians, and physicists
alike. Rotation seems to be serving as a bridge between two-
dimensional �2D�, quasi-2D, and 3D turbulences, a fact well
established with the discovery of two-dimensionalization of
3D turbulence due to rotation.

In the steady nonturbulent flow, for low Rossby number
�Ro=U /2L�� and high Reynolds number �Re=UL /��, the
Taylor-Proudman theorem �1� argues that rotation two-
dimensionalizes the flow. This argument is often mistakenly
extended to turbulent flows to explain the rotation induced
two-dimensionalization arising therein. The two-
dimensionalization of the 3D turbulent flow in the presence
of rotation has begun to be understood as a subtle nonlinear
effect which is distinctly different from the Taylor-Proudman
effect.

Cambon et al. �2� showed that in the presence of rotation,
the transfer of energy from small to high wave numbers is
inhibited; at the same time, the strong angular dependence of
this effect leads to a draining of the spectral energy from the
parallel to the normal wave vectors �with respect to the ro-
tation axis� showing a trend towards two-dimensionalization.

Waleffe �3� used helical decomposition of the velocity
field to study the nature of triad interactions in homogeneous
turbulence and coupling it with the instability assumption
predicted a transfer of energy toward wave vectors perpen-
dicular to the rotation axis under rapid rotation. The helical
decomposition turns out to be very handy to deal with rap-
idly rotating turbulent flow. In that case the linear eigensolu-
tions of the problem, the so-called inertial waves, have the
structure of helical modes. The assumption about the triadic
transfers, coupled with resonance condition for nonlinear in-
teraction between inertial waves, shows that there will be a
tendency toward nonlinear two-dimensionalization of the
flow.

Simulations by Smith et al. �4� speak volumes for the
two-dimensionalization effect. They showed the coexistence

of inverse cascade �a typical feature of 2D turbulence� and
forward cascade in forced rotating turbulence within a peri-
odic box of small aspect ratio. In the simulations, the ratio of
the mean rates of energy dissipated to the energy injected
decreased almost linearly, for Ro less than a critical value,

with decrease in Ro �increase in angular velocity ��� ��. By the
way, a very recent numerical study �5� shows similar transi-
tion from stratified to quasigeostrophic turbulence, mani-
fested by the emergence of an inverse cascade—a conclusion
that agrees with that of Lindborg �6�.

Although recent experiments by Baroud et al. �7,8� and
Morize et al. �9,10� have shed some light on the two-
dimensionalization effect, the scaling of two-point statistics
and energy spectrum in rotating turbulence remains a contro-
versial topic. Zhou �11� in analogy with magnetohydrody-
namic �MHD� turbulence proposed an energy spectrum
E�k��k−2 for rapidly rotating 3D turbulent fluid and this
does seem to be validated by some experiments �7,8� and
numerical simulations �12–15�. But some experiments �9� do
not tally with this proposed spectrum. They predict steeper
than k−2 spectrum and this again seem to be drawing some
support from numerical results �16,17� and analytical results
found using wave turbulence theory �18,19�.

To be precise, if one wishes angular velocity to become a
relevant parameter in constructing the energy spectrum E�k�,
simple dimensional analysis would lead one to

E�k� � ��3m−5�/2��3−m�/2k−m, �1�

where m is a real number. m should be restricted within the
range 5/3 to 3 to keep the exponents of � and � in relation
�1� positive. The two limits m=5/3 and m=3 corresponds to
isotropic homogeneous 3D turbulence and 2D turbulence,
respectively. The spectrum due to Zhou—E�k��k−2—is due
to an intermediate value of m=2. So, as far as the present
state of the literature on rotating turbulence goes, two-
dimensionalization of 3D turbulence would mean the domi-
nance of a spectrum which goes towards E�k��k−3 and
which may choose to settle at E�k��k−2, an issue yet to be
fully resolved.

All these studies are for low Ro high Re limit while the
high Ro high Re limit has been rather less ventured in rela-
tion to the two-dimensionalization of turbulence. Now, the
two-point third-order correlation function �S3� in homoge-
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neous isotropic turbulence has a rare nontrivial exact result.
In this paper we have studied the two-point third-order cor-
relation function �S3� in this latter regime of high Ro and
high Re and went on to argue that a spectrum which goes as
k−2.87 �i.e., in between k−2 and k−3� exists although dominated
by the 3D spectrum E�k��k−5/3 the reason for which of
course is that we are dealing with low rotation limit. This
obviously hints at the initiation of the two-
dimensionalization effect with slow rotation.

Also, if one goes by the procedure given in the book by
Frisch �20� to derive the form of the correlation function in
d-D turbulence with the assumption of forward energy cas-
cade, one would land up on �21�

S3 ��	
v��x� + l�� − v��l��� ·
l�

�l��
�3 = −

12

d�d + 2�
�l , �2�

where � is the mean rate of dissipation of energy per unit
mass. This result is not quite true for the two-dimensional
case since it gives for d=2, S3=−�3/2��l and not S3

= �3/2��l because the calculation does not take into account
the conservation of enstrophy which causes the reverse cas-
cade of energy �22�. It might be noted that S3= �3/2��l for
d=2 is for the regime of scales larger than the forcing scale
�23,24�. If, using calculations of structure functions, in the
limit of high Ro and high Re, one wishes to see whether a
trend towards two-dimensionalization of 3D homogeneous
isotropic turbulence occurs or not, then basically one would
have to check �a� if S3=−�4/5��l at small scales for 3D
turbulence shows a tilt towards S3= �3/2��l at large scales
for the 2D turbulence and �b� if the forward energy cascade
is depleted at the smaller scales. As we shall show here,
in the lowest-order calculation this is what one may get,
again hinting at the initiation of the effect of two-
dimensionalization of 3D turbulence owing to the small an-
isotropy induced by slow rotation.

II. RELEVANT SCALES IN ROTATING TURBULENCE

Let us look into the various length scales that have to be
taken into consideration while talking about a homogeneous
rotating turbulence which basically satisfies following ver-
sion of the Navier-Stokes equation

�v�

�t
+ �v� · �� �v� = −

1

�
�� P − �� � ��� � x�� − 2�� � v� + ��2v� + f� .

�3�

Various parameters to be considered are � �kinematic viscos-
ity�, � �finite mean rate of dissipation of energy per unit
mass�, � �angular velocity�, and l0 �integral scale which typi-
cally is the system size�. The three important time scales
involved in the system are tl��−1/3l2/3 �eddy-turnover time
or circulation time for the eddy of scale l; l� l0�, t���−1,
and td� l2 /� �diffusion time scale�. It is well known that a
length scale l�=��� /�3� is what is responsible for the esti-
mation of the anisotropy introduced by the rotation. The
competition between the time scales tl and td gives rise to
what is known as dissipation length scale ld, defined as ld

= ��3 /��1/4 and a similar competition between the time scales
td and t� allows us to define a length scale l�d=��� /��.
Now, let us look at the typical scenario when Ro is moderate.
The four vital length scales are typically arranged according
to the order l0� l�� l�d� ld. Thus, the regime l0� l� l� is
the regime where the effect of rotation is important and an-
isotropy reigns. The scales l� �l� , ld� may be considered to
have isotropy, though to be precise, probably ld here should
be replaced by l�d since rotation seems to be bringing the
effect of viscosity to rather larger length scales. So, now
what happens when the Ro is decreased by increasing the
angular velocity is interesting. Both the scales l� and l�d
rush toward the dissipation length scale, thereby increasing
the anisotropic regime and at the angular velocity �=�a

���� /�� one has l�= l�d= ld and the turbulence is fully an-
isotropic.

Strictly speaking, even a small rotation introduces aniso-
tropy �however, small� at all scales and the isotropic regime
does have a degree of anisotropy in it as we shall see in this
paper. In the fully anisotropic limit, i.e., for �=�a, one ex-
pects full decoupling of the plane perpendicular to the rota-
tion axis from the direction of the rotation axis. However,
even in the partially anisotropic limit �e.g., when we have
slow rotation imparted on the turbulent fluid�, lz should still
be given a special status for being in the direction of the
rotation axis, by which we mean that the structure functions

should no longer depend on l but rather on lz and l�� �where

l2= lz
2+ l�

2 and ��� �=�z�. We shall see how this decoupling
sets in, in the limit of low angular velocity and try to study in
that very limit, the two-point third-order structure function in
the first approximation and see how the effect of two-
dimensionalization is all set to sneak in with the switching
on of rotation.

III. S3 FOR SMALL �

Let us start with the low � limit. With this statement we
mean, as discussed in the previous section, �	�a. So, the
entire fluid may still be treated as isotropic but as rotation
should play a role, we assume that �viv jvk�� �where angular
brackets mean ensemble average and vi=vi�x� , t� is the ith

component of velocity and similarly, vi�=vi�x� + l�, t�� should

depend on �� as well. �� would take care of the mild aniso-
tropy. Since, physically speaking, S3 should not depend on
which way the rotation axis is and since we are interested in
low values of �, we shall let �viv jvk�� depend only on the
terms quadratic in � and not bother about higher-order terms
in �. As a result, we write the following most general ten-
sorial form for �viv jvk��:

bij,k � �viv jvk��

= C�l�
ijlk
o + D�l��
iklj

o + 
 jkli
o� + F�l�li

olj
olk

o

+ G�l����imklj
o + � jmkli

o�lm
o � + H�l��i� jlk

o

+ I�l����imk� j + � jmk�i��m� + K�l���i�klj
o + � j�kli

o� ,

�4�

where li
o is the ith component of the unit vector along l�. We
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have assumed that the coefficients are dependent only on l

and it is the �� which is taking care of the mild anisotropy
which the turbulent fluid might have. We must accept that the
assumption of letting coefficients depend only on l is rather
crude in the light of the complex forms that the two-point
tensors in a fully anisotropic turbulence flow take �25�. The
justification, and hence solace, for the assumption, however,
can be drawn from the fact that very simple revealing results
matching with recent experiments are arrived at in the long
run. As we are considering incompressible fluid, we must
have

�k�bij,k = 0 �5�

which when applied to relation �4�, yields relationships be-
tween various coefficients. Einstein summation convention
has been extensively followed in these calculations unless
otherwise specified. Using relations �4� and �5�, one lands up
in the end on the following:

Bijk � ��vi� − vi��v j� − v j��vk� − vk��

= 2�bij,k + bjk,i + bki,j�

= − 2�lC� + C��
ijlk
o + 
iklj

o + 
 jkli
o� + 6�lC� − C�li

olj
olk

o

+ 4Jl��i� jlk
o + �i�klj

o + � j�kli
o� . �6�

Here, primes denote derivative with respect to l and J is a
constant which, curiously enough, is of the same dimension
�L2T−1� as that of the kinematic viscosity. Now we can see
that using the relation �6�, two-point third order structure
function �S3� can be extracted from Bijk in the following
way:

S3�l� � ��
v��l���3�

� �	
v��x� + l�� − v��x��� ·
l�

l
�3

= ���vi� − vi�li
o���v j� − v j�lj

o���vk� − vk�lk
o��

= Bijkli
olj

olk
o = − 12C +

12J

l
��� · l��2, �7�

where we have used relation �6�. One may define physical

space energy flux ���l��� as

��l� � −
1

4
�� l · ��
v��l���2
v��l��� , �8�

��l� = lC� + 7C� +
8C

l
+ 3J�2 +

6J

l2 ��� · l��2. �9�

To get relation �9�, we have again made use of the relation
�6�. The energy flux through the wave number K ��K� for the
isotropic homogeneous turbulence may be calculated to be

�K =
2


�

0

�

dl
sin�Kl�

l
�1 + l�l���l� . �10�

Now if one makes the standard assumption �often made
made during the derivation of S3� that as Re→�, the mean

energy dissipation per unit mass ���� tends to a positive
finite value �i.e., lim�→0 ����=��0�, then lim�→0 �K=� in
the inertial regime. Therefore, in the inertial range, putting
x=Kl, one has

�K =
2


�

0

�

dx
sin�x�

x
f� x

K
� = � , �11�

where

f� x

K
� = f�l� = �1 + l�l���l� . �12�

For small l �large K�, the integral in relation �11� yields

f�l� � � . �13�

Now using relations �9�, �12�, and �13�, we form a differen-
tial equation which when solved keeping in mind that S3
should not blow up at l=0 one gets the following form for S3
in slowly rotating homogeneous turbulent fluid:

S3�l� = −
4

5
�l +

12

5
Jl��2 + 7��klk

o�2� . �14�

One may note from the relation �14� that � has brought up
the anisotropic effects even for small � though for the entire
calculation we followed the procedure for the homogeneous
isotropic turbulence. Thus, the form for S3 is plausible.

One may ask, “Does the effect of two-dimensionalization
show up in the relation �14�?” As one may note from the
relation �14� this is quite possible, the only catch being that J
should be positive, an issue which we have not been able to
resolve. If J is positive, it means if we increase � the value
of S3 would distort away from the usual −�4/5��l for the
nonrotating case to more positive values. This apparently
shows that the effective value of � is decreased depicting that
the forward energy transfer is depleted which is in keeping
with the discussion given in the last paragraph of Sec. I and
hence the tendency of the rotating 3D turbulence to show the
effect of the two-dimensionalization is being highlighted.
That the sign of J should be positive is a question that re-
mains to be addressed.

By the way, the relation �14� also suggests that the coef-
ficients in the tensorial form for bij,k should have dependence
on lz and l� separately effecting a mild decoupling of direc-
tions. So we proceed to rewrite bij,k for slowly rotating 3D
turbulent fluid but now introducing anisotropy directly into
the coefficients and not letting � take care of anisotropy
explicitly. Of course, the coefficients will now depend on �.

For completely isotropic homogeneous turbulence, one
would write following general form �relation �15�� for bij,k
which is made up of the Kronecker delta and components of

the unit vectors l�/ �l��:

bij,k = C�l�
ijlk
o + D�l��
iklj

o + 
 jkli
o� + F�l�li

olj
olk

o. �15�

The expression is symmetric in i and j and the coefficients
are dependent on l only. As discussed earlier, with rotation
coming into effect, anisotropy comes into effect. If this ef-
fects in the possible decoupling �even if partial� of the direc-
tion along the rotation axis �which we shall take along the z

THIRD-ORDER STRUCTURE FUNCTION FOR ROTATING … PHYSICAL REVIEW E 76, 036304 �2007�

036304-3



axis�, then mathematically we may introduce this effect by
modifying the form �15� of bij,k to the following:

bij,k = C�l,lz,��
ijlk
o + D�l,lz,���
iklj

o + 
 jkli
o�

+ F�l,lz,��li
olj

olk
o. �16�

If one uses the incompressibility condition �relation �5��, one
obtains

D =
l

2
�− C� −

Ċlz

l
� − C �17�

and

Ḋ = 0, �18�

where an overdot represents the derivative with respect to lz
and prime, as before, the derivative with respect to l. Using
Eq. �17� in Eq. �18�,

C̈lz + lĊ� + 3Ċ = 0 ⇒ C = �
n

Anl−n−2lz
n ⇒ C � 0

for n � �− �,− 2� � �0,�� ⇒ C = D = F = 0. �19�

In arriving at the result �19�, we have taken care of the fact
that C cannot be allowed to blow up for either lz=0 or l=0.
Thus the relation �16� vanishes trivially. So, we are left with
the following choice:

bij,k = C�l�,lz,��
ijlk
o + D�l�,lz,���
iklj

o + 
 jkli
o�

+ F�l�,lz,��li
olj

olk
o. �20�

Using relations �5� and �20�, we arrive at the following rela-
tionship between the coefficients:

D = −
l�

2
C̃ −

lz

2
Ċ − C , �21�

F =
l2

2
C̃
˜

+
l2lz

2l�

C̃
˙

+ � 3l2

2l�

−
l�

2
�C̃ −

lz

2
Ċ − C . �22�

Here tildes and overdots define derivatives with respect to l�

and lz, respectively. Proceeding monotonously as before we
get

Bijk = 2�bij,k + bjk,i + bki,j�

= − 2�l�C̃ + lzĊ + C��
ijlk
o + 
iklj

o + 
 jkli
o� + 6Fli

olj
olk

o.

�23�

Hence,

S3 = Bijkli
olj

olk
o = 6�F − �l�C̃ + lzĊ + C�� . �24�

The definition for the physical space energy flux ���l��� obvi-
ously has to be modified to

��
v��l���2
v��l��� = Bii�l�
o l��

l�

+ Biizlz
o l�z

lz
, �25�

where � takes two values x and y only. Now, using relations
�8�, �22�, �23�, and �25�, and performing tedious algebra one
gets

��l�,lz� =
− 1

4�l�
2 + lz

2�2 ��3l�
6 + 6l�

4 lz
2 + 3l�

2 lz
4�C5

˜
+ �3l�

5 lz + 6l�
3 lz

3 + 3l�
4 lz

2 + 6l�
2 lz

4 + 3l�lz
5 + 3lz

6�C5̇ + �3l�
3 lz

3 + 6l�lz
5 + 3l�

−1lz
7�C̃¨

+ �5l�
5 + 6l�

4 lz + 23l�
3 lz

2 + 12l�
2 lz

3 + 18l�lz
4 + 6lz

5�C̃˜ + �− 7l�
4 lz + 5l�

3 lz
2 − l�

2 lz
3 + 23l�lz

4 + 6lz
5 + 18l�

−1lz
6�C̃˙

+ �− 12lz
4 − 8l�

3 lz − 20l�
2 lz

2 + 36l�lz
3 + 18lz

4 + 8l�
−1lz

5�C̃ + �− 13l�
3 lz − 43l�

2 lz
2 − 39l�lz

3 − 17lz
4�Ċ

+ �− 4l�
3 − 8l�

2 lz − 12l�lz
2�C� . �26�

The energy flux ��K� through the wave number K for the
homogeneous �not necessarily isotropic� turbulence may be
shown to be

�K =
1

22�
R3

d3l
sin�Kl�

l
�� l · 	��l��

l�

l2� . �27�

Using cylindrical polar coordinates we reduce the relation
�27� to

�K =
1


� � l�dl�dlz

�� sin�Kl�
l

	 l�

l2

�

�l�

+
lz

l2

�

�lz
+

1

l2���l��� . �28�

Now, we introduce the variables y=Kl� and z=Klz in rela-
tion �28� to get
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�K =
1


�

z=−�

� �
y=0

�

dydz
sin�y2 + z2�1/2

y2 + z2 	 f� y

K
,

z

K
�� .

�29�

Now, let us probe the small l behavior. Because
�z=−�

� �y=0
� dydz�sin�y2+z2�1/2� / �y2+z2�=2 /2, we have

f�l�,lz� �
2�


. �30�

Obviously, � has the meaning of finite positive mean rate of
dissipation of energy per unit mass. Using expressions �26�
and �30�, we look for the lz=0 limit. One then has the result

	l�

�

�l�

+ 1��3l�
2 C5

˜
+ 5l�C̃

˜
− 12C̃ − 4

C

l�

� = −
8�



⇒ 3l�
4 C5
5

+ 14l�
3 C5

˜
− 2l�

2 C̃
˜

− 16l�C̃ = −
8�


l�

⇒ C = �A1 + A2l�
−1 + A3l�

�7−�97�/6 + A4l�
�7+�97�/6� +

�l�

2
.

�31�

Relations �22�, �24�, and �31� together yield following ex-
pression for S3:

�S3�lz=0 = −
6


�l�

+ A4	3�7 + �97

6
��1 + �97

6
� − 12�l�

�7+�97�/6

⇒ �S3�lz=0 = −
6


�l� + Al�

�7+�97�/6, �32�

where A is a constant which for obvious reason depends on
� and �. Using dimensional arguments and introducing a
nondimensional constant c, we may set

A = c��1+�97�/4��11−�97�/12. �33�

From relations �32� and �33�, we may finally write

�S3�lz=0 = −
6


�l� + c��1+�97�/4��11−�97�/12l�

�7+�97�/6. �34�

This relation is the final form for the two-point third-order
structure function in the plane whose normal is parallel to the
rotation axis for slowly rotating homogeneous 3D turbu-
lence.

IV. ENERGY SPECTRUM FOR SMALL �

If we for the time being forget about the issue of anoma-
lous scaling, then a mere inspection of the relation �34� from
the point of view of dimensional analysis would tell that in
the directions perpendicular to the axis of rotation, there are
two possible energy spectrums, viz.,

E�k� � k−5/3 �35�

and

E�k� � k−�16+�97�/9 �36�

which are, respectively, due to the first and second terms on
the right-hand side of the relation �34�. It is very interesting
to note that the exponent of k in the relation �36�, i.e.,
−�16+�97� /9, equals −2.87 which is in between −3 �for 2D
turbulence� and −2 �for rapidly rotating 3D turbulence as
proposed by Zhou�. Obviously, the spectrum �35� will be
dominant compared to the spectrum �36�. But as the � is
increased �of course, remaining within a range so that the
anisotropy is not strong enough to breakdown the arguments
used to calculate the S3 of the relation �34��, the spectrum
�36� becomes more and more prominent; thereby two-
dimensionalization of the 3D homogeneous turbulent fluid is
initiated which then carries over to the high rotation regime
as is being extensively studied. This signature of two-
dimensionalization is, of course, in agreement with what the
present literature on turbulence hails as the two-
dimensionalization of turbulence.

V. CONCLUSION

To conclude, we emphasize the fact that the form of two
point the third-order structure function in a slowly rotating
homogeneous 3D turbulence can give a strong hint of the
initiation of the effect of two-dimensionalization of 3D tur-
bulence. It barely needs to be mentioned that the relations are
quite interesting and pertinent �at least within the approxima-
tions made in the calculations�—something which is worth
attention since there are few exact relations in the literature.
So any theory developed in the limit of Ro→0 and Re→�,
must satisfy the relation derived in this paper in the limit of
low � or explicitly violate the assumptions made to arrive at
the result; in this sense the relation �34� may prove to be
important.
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